ReadFramework
rdf::Algorithms Class Reference

Contains basic algorithms to manipulate images. More...

#include <Algorithms.h>

Static Public Member Functions

static int doubleEqual (double a, double b)
 The resulting rounding error after floating point computations depend on the specific operations done.The same number computed by different algorithms could present different rounding errors.For a useful comparison, an estimation of the relative rounding error should be considered and compared to a factor times EPS.The factor should be related to the cumulated rounding error in the chain of computation.Here, as a simplification, a fixed factor is used. More...
 
static double absAngleDiff (double a, double b)
 
static double signedAngleDiff (double a, double b)
 
static double min (const QVector< double > &vec)
 Returns the minimum of the vector or DBL_MAX if vec is empty. More...
 
static double max (const QVector< double > &vec)
 Returns the maximum value of vec or -DBL_MAX if vec is empty. More...
 
static double normAngleRad (double angle, double startIvl=0.0, double endIvl=2.0 *CV_PI)
 Computes the normalized angle within startIvl and endIvl. More...
 
static double angleDist (double angle1, double angle2, double maxAngle=2.0 *CV_PI)
 Computes the distance between two angles. Hence, min(angleDiff, CV_PI*2-(angleDiff)) More...
 
template<typename numFmt >
static double statMoment (const QList< numFmt > &valuesIn, double momentValue, bool interpolated=true)
 Computes robust statistical moments (quantiles). More...
 

Detailed Description

Contains basic algorithms to manipulate images.

Member Function Documentation

double rdf::Algorithms::absAngleDiff ( double  a,
double  b 
)
static

Here is the caller graph for this function:

double rdf::Algorithms::angleDist ( double  angle1,
double  angle2,
double  maxAngle = 2.0*CV_PI 
)
static

Computes the distance between two angles. Hence, min(angleDiff, CV_PI*2-(angleDiff))

Parameters
angle1The angle1.
angle2The angle2.
Returns
The angular distance.

Here is the caller graph for this function:

int rdf::Algorithms::doubleEqual ( double  a,
double  b 
)
static

The resulting rounding error after floating point computations depend on the specific operations done.The same number computed by different algorithms could present different rounding errors.For a useful comparison, an estimation of the relative rounding error should be considered and compared to a factor times EPS.The factor should be related to the cumulated rounding error in the chain of computation.Here, as a simplification, a fixed factor is used.

Parameters
aInput a
bInput b
Returns
equal if relative error <= factor x eps
double rdf::Algorithms::max ( const QVector< double > &  vec)
static

Returns the maximum value of vec or -DBL_MAX if vec is empty.

Parameters
vecA vector with double values.
Returns
the maximum
double rdf::Algorithms::min ( const QVector< double > &  vec)
static

Returns the minimum of the vector or DBL_MAX if vec is empty.

Parameters
vecA vector with double values.
Returns
the minimum

Here is the caller graph for this function:

double rdf::Algorithms::normAngleRad ( double  angle,
double  startIvl = 0.0,
double  endIvl = 2.0*CV_PI 
)
static

Computes the normalized angle within startIvl and endIvl.

Parameters
angleThe angle in rad.
startIvlThe intervals lower bound.
endIvlThe intervals upper bound.
Returns
The angle within [startIvl endIvl].

Here is the caller graph for this function:

double rdf::Algorithms::signedAngleDiff ( double  a,
double  b 
)
static

Here is the caller graph for this function:

template<typename numFmt >
static double rdf::Algorithms::statMoment ( const QList< numFmt > &  valuesIn,
double  momentValue,
bool  interpolated = true 
)
inlinestatic

Computes robust statistical moments (quantiles).

Parameters
valuesInThe statistical set (samples).
momentValueThe statistical moment value (0.5 = median, 0.25 and 0.75 = quartiles).
interpolatedA flag if the value should be interpolated if the length of the list is even.
Returns
The statistical moment.

Here is the caller graph for this function:


The documentation for this class was generated from the following files: